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› Fourth longest suspension bridge

› 1550m main span

› 250m high towers in steel

› Extremely high seismic load

› Short construction period

› Orthotropic steel girder with 3 lanes of road traffic

› Total steel quantity for towers, cables and bridge 
girder is 70000t

› COWI is responsible for the detailed design

Izmit Bay Bridge, Steel Towers



14 NOVEMBER 2013
DANSK STÅLDAG 20133

Izmit Bay Bridge, Steel Towers
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› Navigational clearance profile 64.3 x 1000m

› Tower foundations at 40m water depth with base isolation

› Steel towers

› Bridge deck continuous trough towers with no vertical supports

› Bridge deck supported in transverse direction by wind bearings

Izmit Bay Bridge, Steel Towers
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Steel Towers, facts
› Steel towers gain from low weight and increased 

flexibility in seismic loading

› Fast construction

› Preferable to design for normal ULS 
combinations and then verify the towers for 
seismic load combinations

› The extreme seismic demands show however 
that plastic design is necessary for an optimized 
and economical tower design (to keep weight 
down and maintain high flexibility)

› Constructed by 22 prefabricated blocks

› Horizontal joints by combined welding and 
bolting

› Vertical joints welded for block 1-11, rest bolted



14 NOVEMBER 2013
DANSK STÅLDAG 20136

+10

+72

+111

+243
+252

Var.
7-8m

7m

Longitudinal steel in legs:

skin plates:
80mm-30mm

448x61mm
464x63mm

6m

3

Longitudinal 
steel in cross 
beams:

All steel: 
S460

Stiffeners:
330x35mm  (upper)
400x42mm (lower)
Skin plate:
20mm – 80mm

Towers,
layout
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Typical leg block

Cross 
frame

Diaphragm

Towers,
layout
› Typical block 

length of 10-13m

› A typical block 
consists of 4 
cross frames and 
1 diaphragm at 
the top 

› The diaphragm is 
also used as 
working platform 
during erection



Panel erection
Block no. 12-22
Tower crane, 40t

Block erection
Block no. 1-11
Floating crane, 
300t

Bolt friction 
connection in 
stiffeners

Towers,
layout

Skin plate 
welded
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Steel towers, production by Cimtas
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Ns[MN] My[MNm] Mz[MNm]

NE leg ‐ Unfactored load contributions  to section  forces
Elevation 143 m (Block 11t)

TOTAL 

Differential Settlement Envelope 

Tandem system (TS)  in LM1 (vertical only) 

udl system  in LM1 

Transverse wind (towards y+) gust wind 
with liveload 

longitudinal 1st tower bending 
‐ 1.5000E‐01m at peak (Worst gust 
windload case with  liveload 90 deg) 

Izmit Temp Combinations  Envelope 

Imperfection Bending moment

Ns < 0 Compression
My > 0 Leaning towards main span (for NT les)
Mz < 0 Leaning towards west

My= 416.8+260.1

Mz= ‐57.7Ns= ‐319.2

Steel towers, load contributions

› Load contribution in 
elevation 143m

› N: Mainly from dead 
load and traffic, only 
little from transverse 
wind

› My: Mainly from 
traffic and 
imperfection

› Mz: Mainly from 
transverse wind
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Load contributions
SP2 SP1

SP4

SP5 SP6

SP7 SP8

SP9 SP10

SP11SP12SP3

IBDAS local 
system

Z

Y

s

Y

IBDAS global 
system

35.70%

0.73%
0.41%

26.87%

2.27%
5.04%

6.40%

22.60%
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NE leg ‐ Unfactored load contributions  to stress in SP1  
Elevation 143 m (Block 11t) ‐ Front panel SP

DL comb incl stressing for ULS 

Differential Settlement Envelope 

Tandem system (TS)  in LM1 (vertical only) 

udl system  in LM1 

Transverse wind (towards y+) gust wind 
with liveload 

longitudinal 1st tower bending ‐ 1.5000E‐
01m at peak (Worst gust windload  case 
with liveload 90 deg) 

Izmit Temp Combinations  Envelope 

Imperfection Bending moment

› Stress contribution in elevation 
143m

› σ: Mainly from dead load, traffic 
load and imperfection
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Tower at deck

Tower at lower 
cross beam

Tower at upper 
cross beam & 
saddle

Towers, special areas

› The special areas are in general 
verified through local shell models 
built into the global FE-model. 
Thereby no boundary conditions 
are necessary and 2.order effects 
and plasticity are automatically  
accounted for
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› 84 no. M110 anchor rods class 10.9, 
L=11m, 6MN preload

› Shear resistance achieved by friction 
and 34 no. M115 shear rods

› Local ship impact of 10.5MN over 
1m2

› 5 diaphragms installed due to ship 
impact

Tower at base
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Towers, seismic limit statesTower at base, Cimtas
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› Bridge deck is "floating" through the tower 
legs 

› Transverse loading is taken by one bearing 
on each leg, designed for 13 MN in normal 
ULS (primary due to wind) and 35 MN in 
seismic load combination

› Large movements in both longitudinal and 
vertical directions during seismic events

Tower at deck
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Tower at lower cross beam

› Large bending 
moments My due to 
transverse wind 
loading and seismic 
load combination
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Tower at upper cross beam

› Large bending moments Mz due traffic 
loading giving uneven deflection of the two 
tower legs in longitudinal direction 

› Others as for lower cross beam
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Towers, design of leg members
› Cross section class 1 to 3 are generally economical 

for compression members

› Section class 1 and 2 have post elastic capacity

› Initial proportioning made to correspond 
approximately to class 2 in regions with high 
seismic demands

› Cross section class definition applies for 
members where local buckling is 
controlled by plate proportioning only

› For stiffened plates, transverse stiffener 
spacing must also be considered

› Class 2 cross-sections are those which can develop their plastic moment 
resistance, but have limited rotation capacity because of local buckling



Outstand flange
448x61mm

Internal compression part
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Outstand flange
448x61mm

Internal compression 
part

Towers, design of leg members
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Towers, design of leg members
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Towers, design of leg members
› From the figure is 

seen that no 
reduction in 
capacity shall be 
made within the 
level from 120m up 
to 205m 
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Towers, ultimate limit state (ULS)

SP2 SP1

SP4

SP5 SP6

SP7 SP8

SP9 SP10

SP11SP12SP3

IBDAS local 
system

Z

Y

s

Y

IBDAS global 
system

› Verification according to 
EN1993-1-5 considering 12 
stress points in the cross section

› All stresses are below yielding

› Plastic design generally not 
allowed for ULS
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› Seismic load case analyses in IBDAS:
› Non-linear time history analysis

› Elastic or plastic material

› Road traffic corresponds to 20% of  
full traffic load

› Second order effects included by 
means of global geometric 
imperfections

Towers, seismic limit states
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Towers, seismic limit states

› 3 seismic events 
are shown:      
150 years (FEE) 
1000 years (SEE)  
2475 years (NCE)

› Longitudinal 
bending moments 
for north tower

› Average of 7 time 
histories

› South tower less 
onerous due to 
different soil 
conditions



14 NOVEMBER 2013
DANSK STÅLDAG 201325

Towers, seismic limit states

› Elastic design not 
sufficient to verify 
north tower legs

› For 1000 and 2475 
year events, 
inelastic response 
is acceptable

› Limited damage, 
so structure can 
be restored 
essentially to its 
pre-seismic 
conditions 
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Towers, seismic limit states
› Force demands calculated by IBDAS nonlinear, 2nd 

order analysis using plastic material properties

› Realistic value of yield strength to be applied to ensure 
that the benefit from reduction in peak moment is not 
taken prior to the actual formation of the plastic hinge

› Seismic design items to be verified:

› Verification of plastic section capacity - cross section 
to sustain force demands

› Verification of rotation capacity - code requirement 
for ensuring ductility

› Verification of global integrity – done in global FE-
model ensuring no global buckling collapse

› Verification of permanent deformations –
"Repairable damage" after SEE, NCE and to be 
restored to pre-seismic conditions

Longitudinal bending 
moment in tower leg 
(principle sketch)

Plastic bending 
moment limited to Mpl

Elastic bending 
moment "unlimited"
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› Plastic verification according to EN1993 part 1-1

› No guidance whether formulas are applicable for 
plated structural elements

› Need for FE modelling to prove plastic section 
capacity of tower leg cross section

Towers, seismic limit states
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Towers, Abaqus FE-model
› Scope of model

› Derive plastic section capacity 

› Derive plastic rotation capacity

› Basic model description
› Three blocks

› Load (N+M) applied at the top, bending 
moment increased until failure

› Equivalent imperfections
› Accounting for structural and 

geometrical imperfections

› Analyses
› Stain hardening

› 2.order with large deformations
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› Longitudinal bending moment only:

› Conclusion: Cross section is almost 
section class 2 (~"class 2.2")

VMIS stresses -
yielding at both 
sides

PlasticElastic

Towers, Abaqus FE-model
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Abaqus video 
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› Longitudinal bending and axial force

VMIS stresses -
yielding at one 
side only

Towers, Abaqus FE-model
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Towers, seismic limit states

› Elastic UR =1.15 (peak stress) reduced to UR~0.97 (moment 
capacity) by deriving the plastic capacity in Abaqus

(load magnification factor acc. to EN1993-1-5 annex C)

*) The bending moment 
capacity from Abaqus is 
increased by factor 1.035 
as not all plates are fully 
modeled
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Towers, seismic limit states

Start

End
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Towers, seismic limit states

› It must be verified that the plastic rotation demands are less than the plastic 
rotation capacities divided by 1.4:

(for single most critical time history)

0.9 is a conservative value, found to 1.07 previously
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› Tower to have "repairable damage" after event and to be restored to pre-seismic 
conditions

› Result to be taken as average of 7 time histories

› Permanent deformations becomes 50mm or 1/4850xtower height - acceptable

Longitudinal displacement vs. time at three levels

Towers, seismic limit states
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Summary of seismic checks

Item Criteria Demand 
calculation

Capacity 
calculation

Result

1) Verification 
of plastic  
capacity

Safety factor of 1.05 Global FE-
model 
(IBDAS)

Abaqus UR = 0.97

2) Verification 
of rotation 
capacity

Safety factor 1.4 Global FE-
model 
(IBDAS)

Abaqus UR = 0.75

3) Verification 
of global 
integrity 

No buckling collapse 
failure for "average time 
history"

Global FE-
model 
(IBDAS)

IBDAS All time 
histories 
pass

4) Verification 
of permanent 
deformations

"Repairable damage". 
Permanent deformations 
less than initial tower 
imperfections 

IBDAS - Only 50mm 
permanent 
deformation
UR = 0.20
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Towers, seismic limit statesIzmit Bay Bridge, Steel Towers

Thank you for your attention 


