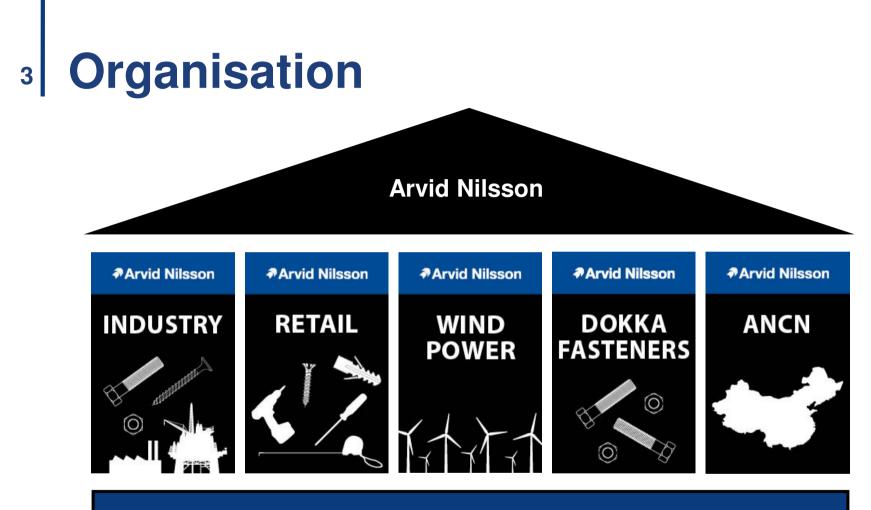
Dansk Ståldag 2011

Bolting material

Brief introduction to Arvid Nilsson


Bolting material in accordance with EN 1090-2

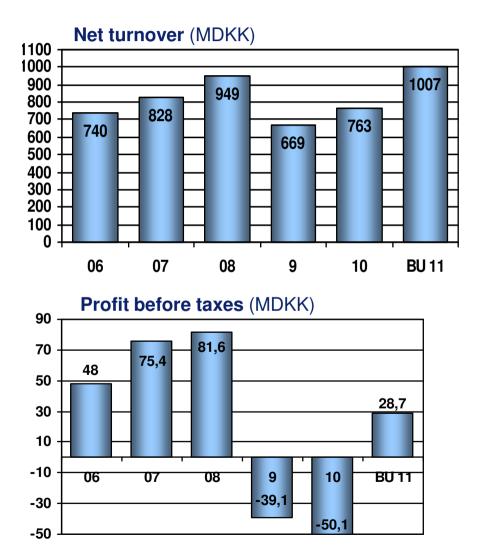
- EN 14399 Structural bolting for pre-loading
- EN 15048 Non-preloaded structural bolting

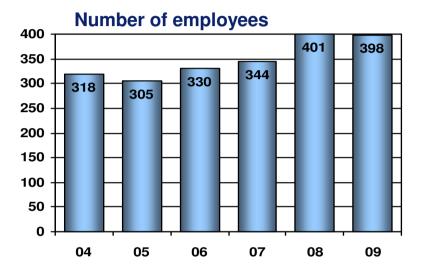
Installation of bolts

- Torque, clamping force, deviation
- Lubrication and friction control

Supply Chain Management (Purchasing & Logistics/Shared Services)

Marketing, Finance, IT, HR (Shared Services)



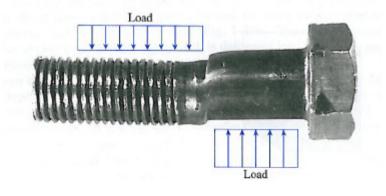

4 Arvid Nilsson geography

Arvid Nilsson

5 Key figures

KEEPING THINGS TOGETHER

Arvid Nilsson

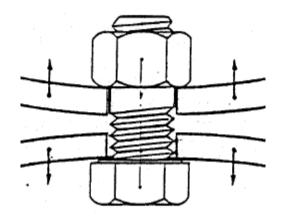

6 Bolting material according to EN 1090

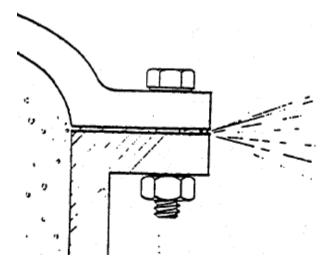
- EN 14399 Structural bolting for pre-loaded assemblies
- EN 15048 Non pre-loaded structural bolting

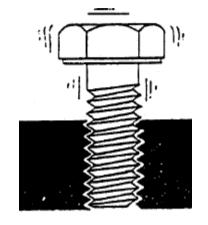
7 Loading of screw joints

Non preloaded joint

Preloaded joint




Longitudal stress


Shear Stress

⁸ What is a preloaded screw joint?

Arvid Nilsson

9 EN 14399 Structural Bolting

- EN 14399-4 HV Structural bolting for pre-loaded assemblies
 - Short thread length
 - Larger key size
 - Nut is 0,8xd
 - 10.9 quality only
 - Pre-lubricated nuts
 - Bolts, nuts and washer supplied from one supplier
 - Guaranteed clamping force at specified torque
 - Manufacturers must be approved by third part inspector eg. TÜV
 - *k*-class K1: 0,10 < *k* < 0,16
 - Supplied with 3.1 certificates on request

Stock keeping items from Dokka or Peiner!

10 EN 14399 Structural Bolting

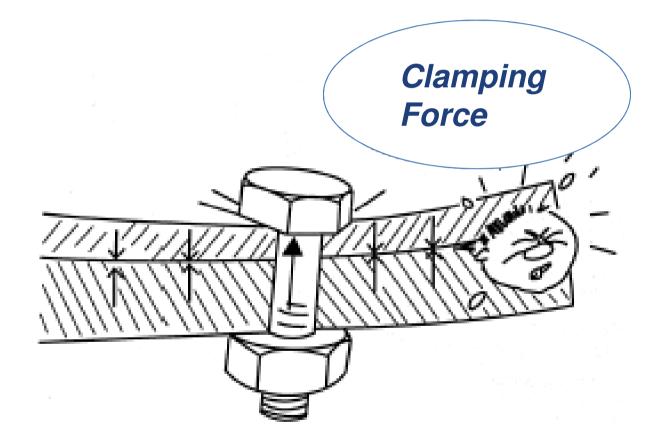
- EN 14399-3 HR Structural bolting for pre-loaded assemblies
 - Thread length equal to standard bolts acc. to ISO 4014
 - Larger key size
 - Nut is 0,9xd
 - Specified in 8.8 and 10.9 qualities
 - Pre-lubricated nuts
 - Bolts, nuts and washer supplied from one supplier
 - Guaranteed clamping force at specified torque
 - Manufacturers must be approved by third part inspector eg. TÜV

Arvid Nilsson

- *k*-class K1: 0,10 < *k* < 0,16
- Supplied with 3.1 certificates on request

Not available in Scandinavia...

Bolting material according to EN 1090


- EN 15048 Non pre-loaded structural bolting
 - 4.8, 5.8, 6.8 or 8.8 qualities are acceptable
 - Bolts and nuts must be marked with SB
 - Manufacturers must be approved by third part inspector e.g TÜV
 - ISO 4014/4032/7089, 4017/4032/7089
 - 3.1 certificates on request

Material on stock – but without SB-Marking

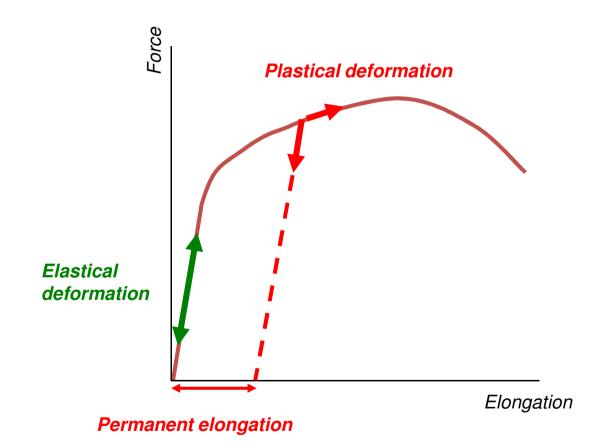
DIN 931/934/125 is no longer an option!

12 Installation of bolts

Tensile Strenght for fasteners

Thread ^a	Nominal stress area $A_{s,nom}^{b}$ mm ²	Property class									
		4.6	4.8	5.6	5.8	6.8	8.8	9.8	10.9	12.9/ <u>12.9</u>	
и		Minimum ultimate tensile load, $F_{m \min}(A_{s, nom} \times R_{m, \min})$, N									
M3	5,03	2 010	2 110	2 510	2 620	3 020	4 020	4 530	5 230	6 140	
M3,5	6,78	2 710	2 850	3 390	3 530	4 070	5 420	6 100	7 050	8 270	
M4	8,78	3 510	3 690	4 390	4 570	5 270	7 020	7 900	9 130	10 700	
M5	14,2	5 680	5 960	7 100	7 380	8 520	11 350	12 800	14 80		
M6	20,1	8 040	8 440	10 000	10 400	12 100	16 100	18 100	20		
M7	28,9	11 600	12 100	14 400	15 000	17 300	23 100	26 000	30		
M8	36,6	14 600 ^c	15 400	18 300 ^c	19 000	22 000	29 200 ^c	37	60	10,000	
M10	58	23 200 ^c	24 400	29 000 ^c	30 200	34 800	46 400 ^c	52	87		
M12	84,3	33 700	35 400	42 200	43 800	50 600	67 400 ^d	75 900	700		
M14	115	46 000	48 300	57 500	59 800	69 000	92 000 ^d	104 000	120 000	140 000	
M16	157	62 800	65 900	78 500	81 600	94 000	125 000 ^d	141 000	163 000	192 000	
M18	192	76 800	80 600	96 000	99 800	115 000	159 000	—	200 000	234 000	
M20	245	98 000	103 000	122 000	127 000	147 000	203 000		255 000	299 000	
M22	303	121 000	127 000	152 000	158 000	182 000	252 000		315 000	370 000	
M24	353	141 000	148 000	176 000	184 000	212 000	293 000		367 000	431 000	
M27	459	184 000	193 000	230 000	239 000	275 000	381 000		477 000	560 000	
M30	561	224 000	236 000	280 000	292 000	337 000	466 000		583 000	684 000	
M33	694	278 000	292 000	347 000	361 000	416 000	576 000		722 000	847 000	
M36	817	327 000	343 000	408 000	425 000	490 000	678 000		850 000	997 000	
M39	976	390 000	410 000	488 000	508 000	586 000	810 000		1 020 000	1 200 000	

Table 4 — Minimum ultimate tensile loads — ISO metric coarse pitch thread


^a Where no thread pitch is indicated in a thread designation, coarse pitch is specified.

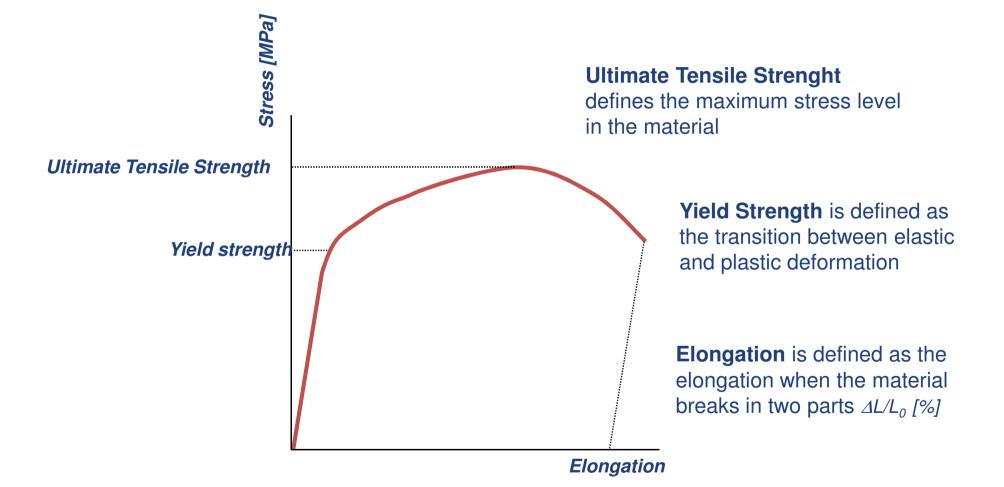
^b To calculate $A_{s,nom}$, see 9.1.6.1.

^c For fasteners with thread tolerance 6az according to ISO 965-4 subject to hot dip galvanizing, reduced values in accordance with ISO 10684:2004, Annex A, apply.

^d For structural bolting 70 000 N (for M12), 95 500 N (for M14) and 130 000 N (for M16).

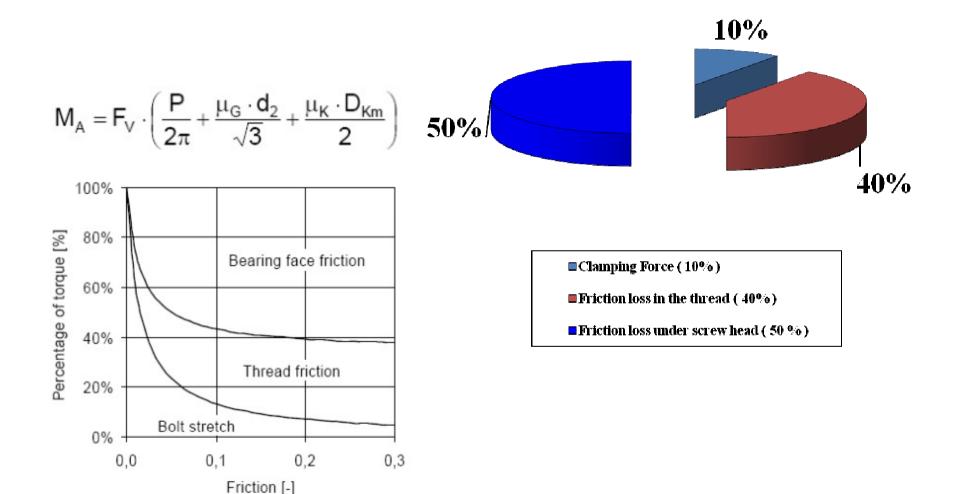
Mechanical Properties

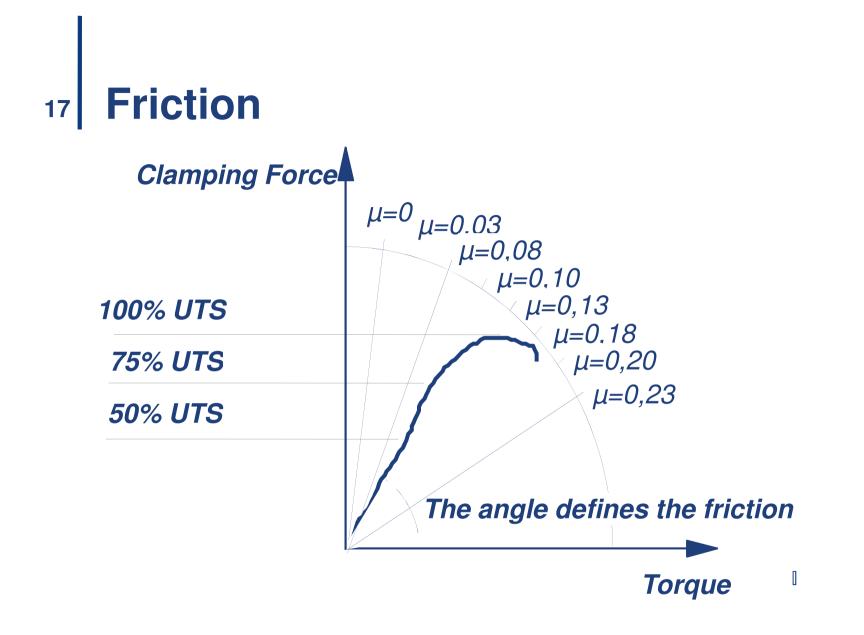
Elastic deformation


The material works as a spring and will return to the original position after load removal

Plastical deformation

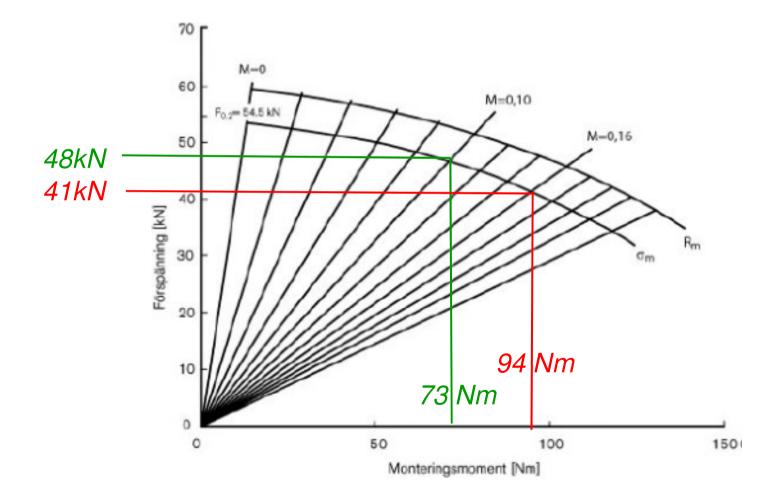
The deformation remains after the load is removed


Mechanical Properties

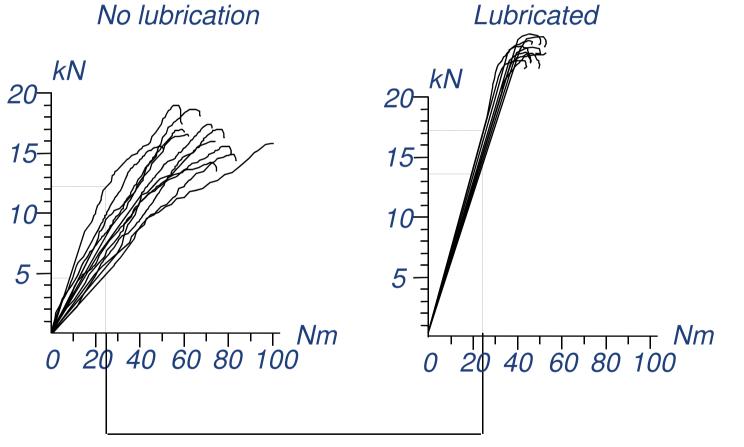

KEEPING THINGS TOGETHER

Arvid Nilsson

16 Distribution of applied torque



Arvid Nilsson

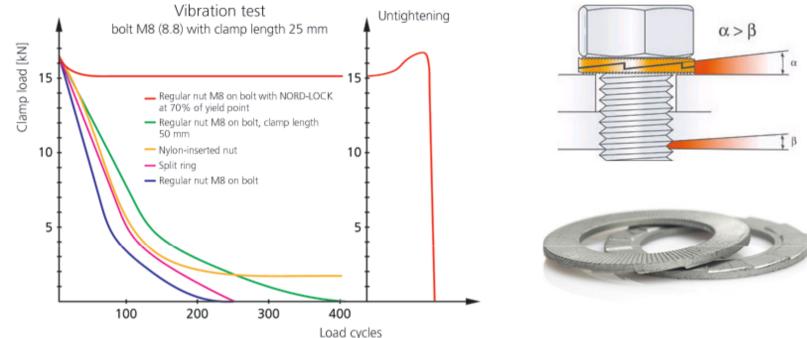

Arvid Nilsson

18 **Example ISO 15071 - M10x50 - 10.9**

Arvid Nilsson

Recommended torque M8 8.8 =24Nm

KEEPING THINGS TOGETHER


Arvid Nilsson

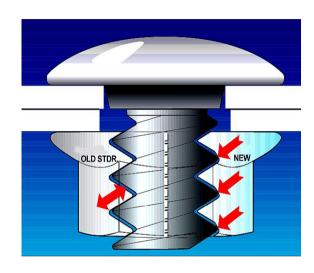
20 Quadrate method

Deviation in Clamping Force = $\sqrt{\text{Deviation in Friction}^2 + \text{Deviation in Torgue}^2}$

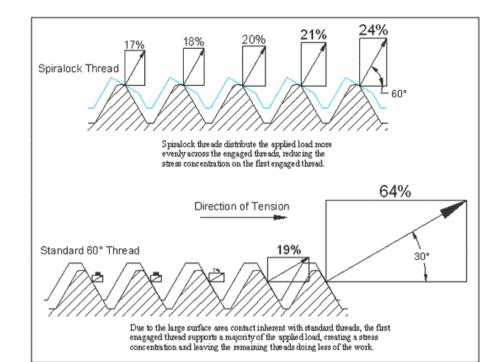
Deviation	Deviatoin T	orque					
Friction	5,0%	10,0%	15,0%	20,0%	25,0%	30,0%	35,0%
5%	7,1%	11,2%	15,8%	20,6%	25,5%	30,4%	35,4%
10%	11,2%	14,1%	18,0%	22,4%	26,9%	31,6%	36,4%
15%	15,8%	18,0%	21,2%	25,0%	29,2%	33,5%	38,1%
20%	20,6%	22,4%	25,0%	28,3%	32,0%	36,1%	40,3%
25%	25,5%	26,9%	29,2%	32,0%	35,4%	39,1%	43,0%
30%	30,4%	31,6%	33,5%	36,1%	39,1%	42,4%	46,1%
35%	35,4%	36,4%	38,1%	40,3%	43,0%	46,1%	49,5%

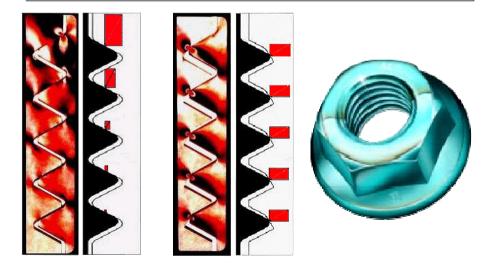
Bolt locking – Locking Washers

Safety washers are based on a wedge locking to give maximal security in critical screw joints with dynamic loads and vibrations.


- Prevents loosening caused by vibrations and dynamic loads
- Easy to mount and demount
- Secure even at low clamping forces
- Can be reused

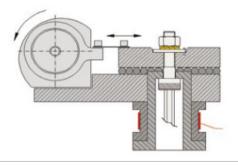
- Controlled friction/clamping force
- Withstands high temperatures
- The locking effect is unaffected by lubricants

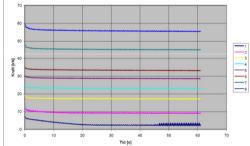


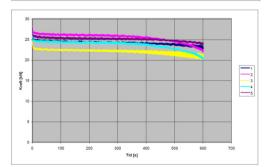

Arvid Nilsson

22 Self-Lock

SELF-LOCK The unique profile of the thread results in a more even distribution of the force in the threaded zone. Due to several points of friction in the thread it eliminates loss of clamping force from dynamic loads and vibrations.




23 Arvid Nilsson Test Equipment


Vibration test equipment acc. to DIN 65151 Junker-method

- Test of the efficiency of locking effect in screw joints
- M6-M8-M10-M12

KEEPING THINGS TOGETHER

Arvid Nilsson

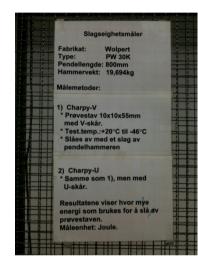
24 Arvid Nilsson Test Equipment

- Clamping forces:
 Up to 300 kN
- Torque: 0-1000Nm
- M6-M24 Class 8.8

- Tensile testing of full size fasteners
- Test of torque/clamping force yield acc.to EN-ISO 16047:2005
- Friction testing with total friction or separated in thread and under head friction

Arvid Nilsson

25 Arvid Nilsson Test Equipment


Test machine in Dokka

- Clamping force:
 - Up to 3000 kN
- Torque 0-30.000 Nm
- M12-M64 Class 10.9
- Test to prove compliance with:
 - EN 14399-2:2005
- •Friction testing with total friction or separated in thread and under head friction

Arvid Nilsson

Test equipment

Impact testing

- Charpy V and U
- +20 to -46° Celsius

• The test piece is manufactured from a finished screw and tested with the pendulum hammer

• The result is given as the amount of energy in Joule used to break the tested material

Arvid Nilsson

Engineering Manager Morten Frydendall M. Sc. Materials Science morten.frydendall@arvidnilsson.com Phone: +45 73207320

