SSAB Weathering OPTIMIZED FOR YOU AND LONG LIFE

SSAB

Ståldag 13.11.2019

WHAT IS SSAB WEATHERING STEEL?

"When rust becomes a coating"

WHY USE WEATHERING STEELS IN GENERAL?

- Weather resistant no need for corrosion protective treatment
- Low life-cycle costs no painting or repainting needed – a carefree solution
- When painted great paint adhesion and doubles the intervals between repaintings
- Environmentally friendly 100% recyclable and blends well into nature surroundings

- Weather resistant no need for corrosion protective treatment
- Low life-cycle costs no painting or repainting needed – a carefree solution
- When painted great paint adhesion and doubles the intervals between repaintings
- Environmentally friendly 100% recyclable and blends well into nature surroundings

- Weather resistant no need for corrosion protective treatment
- Low life-cycle costs no painting or repainting needed – a carefree solution
- When painted great paint adhesion and doubles the intervals between repaintings
- Environmentally friendly 100% recyclable and blends well into nature surroundings

- Weather resistant no need for corrosion protective treatment
- Low life-cycle costs no painting or repainting needed – a carefree solution
- When painted great paint adhesion and doubles the intervals between repaintings
- Environmentally friendly 100% recyclable and blends well into nature surroundings

WHY CHOOSE WEATHERING STEELS FROM SSAB?

Why choose weathering steels from SSAB?

COR-TEN[®] =

Increased Corrosion resistance and Tensile strength

U.S. Steel introduced COR-TEN[®] steel Originally developed for the railway industry

Why choose weathering steels from SSAB?

High strength

		Thickness [mm]	Yield strength min (MPa)	Tensile strength min – max (MPa)	
	SSAB Weathering 550	3 – 12	550	600	-
	SSAB Weathering 700	3 - 6,1	700	750	-
Hot Rolled	SSAB Weathering 960	2,5 - 6,4	960	1000	-
	SSAB Weathering 420*	Up to 65	420	500	660
	SSAB Weathering 460*	Up to 65	460	530	710
Cold Rolled	SSAB Weathering 700	0,98 - 2,1	700	800	-
Tubes & Sections	SSAB Weathering Tube 500WH	2 – 12,5	500	580	760

* Under development. Has been included to the update of EN 10025-5 2019

High strength

Tolerances

Flatness tolerance example:

Hot rolled SSAB Weathering 355 – 1500 mm wide

Why choose weathering steels from SSAB?

Tolerances

Dimensions

THE SURFACE OF SSAB WEATHERING STEELS

Patina formation

- In the beginning the Weathering steels starts to rust as ordinary mild steel
- Patina formation is dependent on the atmospheric conditions

Alternating wet and dry cycles. Faster if the wet and dry cycles are more frequent.
High Sulphur atmosphere accelerates the patina formation.

Patina formation

- In the beginning the Weathering steels starts to rust as ordinary mild steel
- Patina formation is dependent on the atmospheric conditions
- The colour changes from fresh, newly developed orange-brown towards light or dark brown
- Uniform patina cannot form in dry conditions and constantly wet conditions

Time

- The higher the pollution, the darker the patina.
- It takes approximately 2–6 years for the patina to fully develop.

Atmospheric corrosion

- Patina layer on the steel surface of weathering steels is adherent and resists cyclical corrosion loss
- Corrosion loss continues strong with normal carbon steel with scaling and regenerating rust layer (cyclical corrosion loss)
- Corrosion loss is higher in the beginning during patina formation on weathering steel but when the protective layer is formed – corrosion loss is then on low lever.

Corrosion behavior compared to normal carbon steel

32-years COR-TEN B corrosion in Bridges

Annual corrosion loss during 32 years (trend is descending: SO₂ emissions were decreased after 1980's with less corrosion) A = Mikkolantie and B = Itäkeskus bridge (Helsinki) C = Olkinen bridge (Mäntsälä) D = Vårdö bridge (Åland)

conditions after 32 years

Source: VTT-CR-05247-14, Säänkestävien teräslevyjen korroosiotutkimus v. 2014, Leena Carpen, VTT Technical Research Center of Finland

PAINTING SSAB WEATHERING STEELS

Painting benefits

- Good paint adhesion paint sticks to material
- The "self healing effect" minimize creepage of corrosion under paint
- No porous expanding rust is produced, which is the case for carbon steel
- Repainting costs are reduced
- The useful life is normally around two times longer compared to ordinary plain carbon steel

EIFFEL TOWER – PARIS, FRANCE

- Designed by Gustave Eiffel
- Construction finalized in 1889
- ► Total height 317 meters
- 7.300 tons of wrought steel
- If only Mr. Eiffel could have used Weathering Steel for his world-famous structure...
- The City of Paris could have saved 8,6 tons of paint, every year!
- 1.120 tons paint year-to-date
- ▶ 8.400 tons reduction of CO2 year-to-date

*Source: https://www.toureiffel.paris/en/the-monument/painting-eiffel-tower

Corrosion test in Bohus Malmön island 2012-2018

- Paint system: Sa2½

 x 80 µm epoxy primer
 x 40 µm epoxy primer
 x 40 µm polyurethane paint
 Coating thickness 160 µm
- Corrosivity/durability class given for paint system: C3/M
- Corrosivity class in the test site: C5

Test results

- Paint was removed from sample surfaces and penetration of corrosion under the paint layer was evaluated according to ISO 4628-8²
- It was easy to remove the paint from rusted area in basic carbon steel samples.
- It required quite much force to remove paint from corroded area in weathering steel samples.
- Paint layer had still good adhesion to surface on rusty area of weathering steel.

Basic carbon steel (S420)

SSAB Weathering 355

Environmental aspects: bridge case

- Steel surface exposed to severe climate conditions C4/C5 e.g. steel bridges are often painted with Polyurethane paint systems
- Paint thickness layer commonly 320μm
- A rule of thumb is that 1m² of 320µm of Polyurethane paint system release 5kg CO₂*.
- Steel structures are often re-painted every 15-20 years and structure often lasts 80 years which means that it's re-painted 3 times
- Paint thickness when re-painting often 200µm which release 3,1kg CO₂*

* Carbon Dioxide Equivalents (kg CO₂-equivalent)

Total CO₂ emissions for a structure painted with 320μm first time and re-painted 3 times with 200μm paint thickness is 14,4kg per m².

How much is 14,4 kg CO_2^* ?

The average CO_2 emission of a Swedish passenger car in 2017 was 2.130 kg CO_2 per year**

CO₂ emission from one car is equivalent to 149m² steel painted

ONE YEAR = 149m²

**Sources: <u>Swedish Environmental Protection</u> <u>Agency</u> and <u>Statistics Sweden</u>.

What if the Öresund bridge was made of weathering steels?

Facts about Öresundsbron

- Opened in year 2000
- Expected life 100 year
- 82.000 ton of steel and 260.000 liters of paint used when constructing the bridge ¹⁾

Maintenance painting ²⁾

- Around 300.000m² is re-painted
- Maintenance painting every 20 years

Assumptions for maintenance painting:

- Paint thickness: $200 \mu m^{3)}$
- 75.000 liters of paint used each time
- 7,5kg CO₂ released for each liter of paint used ⁴⁾
- Bridge re-painted every 20 years, totally 4 times

	Liters of paint	CO2 (ton)	
Construction	260.000	1.950	
Maintenance x4	300.000	2.250	
Total	560.000	4.200	

SSAR

- 1) Skanska web-page: https://www.skanska.se/vart-erbjudande/vara-projekt/57321/Oresundsbron%2C-Malmo
- 2) https://www.metal-supply.se/article/view/670210/tyskt foretag inleder ommalningen av oresundsbron
- 3) Recommendation according paint producer Tikkurila https://new.tikkurila.com/industry/products/temabond_st_200#data%20sheets

4) Density of paint, 1,5 kg / liter. CO2 released when producing 1 kilo of paint is 5kg CO2.

Cost aspects of painting steel structures

- Costs related to painting or re-painting of steel structures; Labour costs, Paint costs, Scaffolding costs
- To avoid release of flakes, dust and plastic particles into nature, especially during shotblasting before re-painting, costly protection needs to be built
- Close to water protection to avoid paint dropping into water often demanded
- Parts of steel structures can be hard to reach

Protection built for re-painting of bridge in Sundsvall, Sweden link

WHERE TO USE SSAB WEATHERING STEELS?

SUMMARY!

BUILDINGS AND ART

STRUCTURES AND BRIDGES

HEAVY TRANSPORT

SULPHUR RICH OR HIGH TEMPERATURE ATMOSPHERES

STRUCTURES AND BRIDGES

LOW LIFE-CYCLE COST

- Low production cost = no painting needed
- Low maintenance cost = no re-painting necessary
- ► If the steel is painted, longer intervals between re-painting

ENVIRONMENTALLY FRIENDLY

- ► No painting means no risk of polluting surroundings with chemicals
- ► 100% recyclable
- If wood is substituted, no need for poisonous impregnation

STRUCTURES AND BRIDGES

• Appearence that blends into the landscape

SSAB Weathering steel – when rust becomes a coating

HYBRIT[®]

A fossil-free future for iron- and steelmaking

A joint venture between SSAB, LKAB and Vattenfall

HYBRIT [®] TECHNOLOGY

WHERE ARE WE NOW?

HYBRIT[®] Initiative towards fossil-free steel

SSAB

A stronger, lighter and more sustainable world