#### Latest developments in long span bridges

Presentation is based on experience gained from projects

- Present topics important for future development
- Increased demands from or clients

Henrik Polk - Technical Director Bridges International, COWI

14 NOVEMBER 202



# Long span bridges – own ref.

- > Cable stayed bridges built
  - > Tappan Zee 370m, New York 2017 (prepared for railway)
  - > Russky Bridge 1104m, Russia 2012 present world record
  - > Chong Ming Yangtze River Bridge 730m, China 2009
  - > Sutong Yangtze River Bridge 1088m, China 2008
  - Öresund bridge, 490m Denmark 2000 (road and railway)
- > Cable stayed bridges not built yet
  - > Bjørnafjorden Floating Bridge, ½ span of 430m, Norway
- Hybrid bridges (combined suspension- and cable stayed bridge) – built
  - > Yavuz Sultan Selim Bridge 1408m, Türkiye 2016 present world record
- > Floating bridges not built yet
  - Bjørnafjorden Floating Bridge 5400m, Norway

2 14 NOVEMBER 2024



# Long span bridges – own references

- > Suspension bridges built
  - > 1915 Çanakkale Bridge 2023m, Türkiye 2022 present world record
  - > Osmangazi Bridge 1550m, Türkiye 2016
  - > Maputo-Katembe Bridge, Mozambique 2018
  - > Great Belt 1624m, Denmark 1998
  - Chacao Bridge 2x1100m, Chile (under construction)
  - Zhanggao Bridge 2300m, China (under construction)
  - ShiZiYang Suspension Bridge 2180m, China (under construction)
- > Suspension bridges not built yet
  - > Messina Strait Bridge 3300m, Italy
  - > Halsa Fjord Suspension Bridge, 2000m, Norway
  - > Sula Fjord Suspension Bridge, 2000m, Norway
  - > Vartdalsfjorden 2250m, Norway

3 14 NOVEMBER 2024



#### New straits to pass – span lengths

- > Cable stayed bridges max span length of 1104m since 2012 (Russky Bridge)
  - > Appears as max span length has been reached
- > Hybrid bridges max span length of 1408m since 2016 (Yavuz Sultan Bridge)
  - Bridge type substitutes a suspension bridge where vertical deck stiffness is essential e.g. carrying a railway line
- > Suspension bridges max span length of 2023m since 2022 (1915 Çanakkale Bridge)
  - > New bridges under construction increasing max span length to 2300m in 2026-2028
  - > If construction of the Messina Bridge gets stated in 2025, max span length will become 3300m
  - > Hypothetical Gibraltar Crossing with 5000m main span



## New straits to pass – span lengths

- > Floating bridges straits of up to width of 5000m and 500m depth
  - > new concepts are being developed but it will take time to mature the projects
- > Main challenges are (Bjørnafjorden Bridge, Norway):
  - > Relatively high waves in combination with long period swell (15-30s)
  - > Floating bridges are not covered by the Eurocode system
  - Complex correlation between wind and waves for bridge superstructure
  - Ship impact global impact, locally at piers, girder and pontoon walls
  - Hydrodynamic pontoon design and risk of flooded pontoons
  - Complex fatigue loading and verification due to combined waves, wind and traffic
  - Complex erection long prefabricated bridge sections towed to site and connected
  - All in all complex design and construction 14 NOVEMBER 2024



6

#### New straits to pass – ship traffic

- Larger ships and increased ship traffic
- > Çanakkale Bridge used as example
  - > 44,000 registered vessels passing the strait per year – potential increase
  - The traffic today includes 260,000DWT bulk carriers, 167,000DWT oil tankers and 16,000TEU container ships
  - The navigation clearance is 1600m wide by 70m high







#### New straits to pass – ship traffic

Consider and design robust substructures

- Dynamic analysis performed in global FE-model to obtain the sectional forces from the global effect of the impact load
- Strict design criteria introduced to achieve minimal damage of non-accessible parts of foundations under accidental loads

 Lower part of steel tower and concrete plinth design are governed by ship impact



#### New straits to pass – stability of steel box

- Increasing main span length giving challenges in respect to secure the deck flutter stability
  - Simplified flutter instability might happen at low wind speed if the 1<sup>st</sup> torsional frequency becomes too close to the 1<sup>st</sup> vertical frequency
  - Increase torsion stiffness make the steel box higher, or even better widen the steel box, or separate the steel box into two
  - Mono-box girder feasible up to typical 1800-2000m (2300m for Zhanggao Bridge) dependent on wind conditions and special additions
  - > Twin-box girder typical beyond 1800-2000m





#### New straits to pass – mono-box aerodynamic

- Flutter wind speed becomes a challenge for long span single box girders
  - Keep angle of inclined bottom flange reasonable low
  - Install guide vanes at the corner between bottom flange and inclined bottom flange - guiding the wind round the corner and thereby reduces vortex shedding
  - > Active design of safety barriers and parapets
  - Vertical steel plate positioned at centre of deck and at bottom
  - By above active measures the Zhanggao Bridge has been able to stretch the mono-box up to 2300m







#### New straits to pass – stability of mono-box

#### > Typical mono-box girder layout - Osmangazi Bridge

Main span L = 1550 m



1:220 scale full bridge wind tunnel model





#### New straits to pass – stability of twin-box

#### > Typical twin-box girder layout - 1915 Çanakkale Bridge Main span L = 2023 m 1:190 scale full bridge wind tunnel model

Wind barriers



1:190 scale full bridge wind tunnel model







• Flutter wind speed requirement: 69 m/s



#### New straits to pass – twin-box aerodynamic

- > Flutter wind speed as function of deck angle of rotation relative to horizontal
- > The "nose-up effect"





- > Higher wind speed the more the deck will twist "nose up effect"
- > Higher wind speed the more the deck will rotate making the deck even more stable

#### New straits to pass - aerodynamic and wind tunnel tests

- Aerodynamic modelling and testing of long-span bridges are essential obtaining the correct dynamic response of the bridge structure
- > Testing is necessary to investigate:
  - > Wind force coefficients (CD,CL,CM) and derivates
  - > Vortex shedding
  - Galloping
  - > Flutter instability



#### New straits to pass - aerodynamic and wind tunnel tests

- > Typical wind tunnel testing:
  - Tower section model (1:80 scale)
  - Full tower model (1:225) and tower erection stages
  - Deck section model at 1:60, followed later by 1:30
  - Hanger vibration (1:1) and wake galloping
  - Full bridge model (1:190) and deck erection stages





15

#### Environment - seismic analysis

> Design criteria typical considers 3 potential events:

- > Functional evaluation earthquake (FEE) 145 year return period
- > Safety evaluation earthquake (SEE) 975 year return period
- > No-collapse earthquake (NCE) 2475 year return period
  - > For inaccessible substructures a stricter requirement is often introduced following the SEE





#### Environment - seismic analysis

- Important to investigate the non-linear behavior using 7 sets of earthquakes - EC then allows to use average for design
  - Time-displacement actions in three directions at six main bridge supports - see figure below
  - > The analyses to verify sufficient capacity of bridge inclusive hydraulic buffers, tower wind bearings, end stops and soil-structure interaction
  - Anchor blocks and tower caissons often partly governed by seismic
  - > Towers (steel) govern partly by seismic when in "high seismic zones"





## Traffic loading - road

Global road traffic loading - uniformly distributed load (UDL)

Loaded lengths < 200 m, UDL = 81.8 kN/m</p>

> Eurocode 1991-2 load model 1, 2 and 3

(1) Load models defined in Clause 6 should be used for the design of road bridges with loaded lengths less than 200 m.

NOTE 1 200 m corresponds to the maximum length taken into account for the calibration of Load Model 1 (see 6.3.2). In general, the use of Load Model 1 is safe-sided for loaded lengths over 200 m.

NOTE 2 Load models for loaded lengths greater than 200 m can be defined in the National Annex.

# Eurocode miss reduction in road traffic loading for long span bridges

- > Loaded lengths > 200 m UDL = 58.8 kN/m
  - By using EN 1991-2 SE-NA (TRVK Bro 11 taking effect of long loaded length into account)



#### Influence on normal force in hanger



Influence on normal force in main cable



# Traffic loading – road fatigue

- Optimised deck design for modern cable supported bridges require detailed fatigue verifications of the orthotropic steel deck
- The detailed fatigue verifications should be based on full stress histories for individual vehicles
- The full verification is made within the global parametric FE-model
- Verification using the normal fatigue categories or the more refined hot spot method
- How to improve fatigue life will be presented in coming slides

Global FE-model

Semi local shell model within the global model Local mode

Fine mesh size for fatigue verification



# Traffic loading – impact from fatigue

- Many long span bridges experience fatigue problems after 20-50 years in service
  - > Deck plate typical 12mm and trough 6mm
  - Cracks often initiate at diaphragms in heavy lane near the expansion joints and propagates into the deck structure over the years
  - > Heavy traffic increases rapidly
  - > New axle configurations with increased loading
  - Welding techniques, requirements and NDT have however also improved since designs





# Traffic loading – improve fatigue durability

- Increase deck plate and troughs in heavy lanes to say 14-16mm deck plate (perhaps even more) and 7-8mm troughs – already done for most new designs
- > Double-sided welding of troughs to deck being done China
  - > Own preliminary investigations suggest 50% increase in design life
  - Perhaps above can also be done for repair works when asphalt shall be renewed. Troughs shall then be continuously without inside obstructions. This could be a problem for bolted troughs





# Traffic loading – improve fatigue durability

#### > Thickened edge of troughs from 8mm to 12mm

> Partial weld, fully welded from one or two sides



COWI

## Traffic loading – improve fatigue durability

- Better weld quality by new welding techniques - robot welding, laser hybrid welding and automated NDT methods
  - > Improve weld uniformity and quality
  - Fully welding of deck to trough joints from one or two sides
  - > Automated NDT less defects
  - Use of Artificial Intelligence (AI) in welding and NDT process



#### Traffic loading – rail and rail fatigue

- A stiff deck structure is essential when designing long span bridges for rail traffic
- > High truss girder structure is often used, alternatively the new hybrid bridge type
- > Complex analyses to be performed:
  - Simulating trains passing over bridge structure by use of dynamic properties for the trains
  - > Verification of the bridge performance
  - > Train derailment and overturning
  - Comfort analysis
- > Railway fatigue
  - > In principle as for road





## Materials – cable structures

- Cable structures consist of main cables, splay- and tower saddles and hangers
  - > Main cable
    - > Up to 80% of loading in main cable is bridge self-weight, remaining almost from traffic keep deck self weight to a minimum
    - > Air spinning replaced by Prefabricated Parallel Wire Strands (PPWS)
    - Less number of strands gives faster erection coils of 120 tons used for the Çanakkale Bridge
    - > Each strand is pulled from one anchor block to the other giving faster cable erection compared to air spinning
    - Strand is hexagon shaped and has a red wire easy to see if twisted
    - > Wires breaking strength of 1960MPa, but 2060MPa and 2160MPa might soon come into designs. 2060MPa already used in China
    - The main cable (D=850mm for Çanakkale Bridge, D= 1150mm for Zhanggao Bridge) is often protected by elastomeric wrapping and dehumidified ensuring a long design life
    - > Main cable diameter can be increased beyond 850mm without major challenges. Already being done in China





#### Materials – cable structures

- Splay saddles, tower saddles and clamps
  - The trough parts are often manufactured in high strength castiron (G24Mn6+QT2/3) in combination with welded steel plates S460. Be careful not to go too thin in casting thickness

> Hangers

 Parallel Wire Strand (PWS) type is used covered by HDPE sheeting (often in strength 1770MPa). PWS is stiffer than lockcoil cables earlier used







#### Materials – steel structures

- Most common steel materials utilised are S355 to S460
- S550 was however introduced on the Çanakkale Bridge to overcome corner stresses due to Vierendeel effect of the twin-box girder







#### Materials – steel structures

- > S680 was utilised in splice plates connections of the Canakkale tower
- > It is foreseen that milling of steel plate within the range S355 to S460 can be done without reduction in yield strength due to thicknesses increase
- The high-performance steel mills can already deliver above increased guality, but contractors are reluctant as one might narrow the competition
- Alternatively use S500 which was introduced 2019 in EN 10025-4
- > Another way is to use actual yield strength documented in the certificates. This has already partly been utilised
- Less use of materials means less CO<sub>2</sub>



© Danish Standards Foundation DS/EN 10025-4:2019+A1:2022

EN 10025-4:2019+A1:2022 (E)

Table 4 — Mechanical properties - Tensile test properties at room temperature

| Designation     |                                                                                                                                                                                 | Minimum yield strength R <sub>etf</sub> <sup>a</sup><br>MPa<br>Nominal thickness |            |              |              |             |                | Tensile strength R <sub>m</sub> <sup>a</sup><br>MPa<br>Nominal thickness |              |              |             |                | $\begin{array}{l} \text{Minimum} \\ \text{percentage} \\ \text{elongation} \\ \text{after} \\ \text{fracture } b \\ \frac{9}{6} \\ L_0 = 5,65 \\ \sqrt{S_0} \end{array}$ |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------|--------------|--------------|-------------|----------------|--------------------------------------------------------------------------|--------------|--------------|-------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Steel<br>name   | Steel<br>number                                                                                                                                                                 | ≤ 16                                                                             | >16<br>≤40 | > 40<br>≤ 63 | > 63<br>≤ 80 | >80<br>≤100 | > 100<br>≤ 150 | ≤ 40                                                                     | > 40<br>≤ 63 | > 63<br>≤ 80 | >80<br>≤100 | > 100<br>≤ 150 |                                                                                                                                                                          |
| S275M<br>S275ML | 1.8818<br>1.8819                                                                                                                                                                | 275                                                                              | 265        | 255          | 245          | 245         | 240            | 370 to 530                                                               | 360 to 520   | 350 to 510   | 350 to 510  | 350 to 510     | 24                                                                                                                                                                       |
| S355M<br>S355ML | 1.8823<br>1.8834                                                                                                                                                                | 355                                                                              | 345        | 335          | 325          | 325         | 320            | 470 to 630                                                               | 450 to 610   | 440 to 600   | 440 to 600  | 430 to 590     | 22                                                                                                                                                                       |
| S420M<br>S420ML | 1.8825<br>1.8836                                                                                                                                                                | 420                                                                              | 400        | 390          | 380          | 370         | 365            | 520 to 680                                                               | 500 to 660   | 480 to 640   | 470 to 630  | 460 to 620     | 19                                                                                                                                                                       |
| S460M<br>S460ML | 1.8827<br>1.8838                                                                                                                                                                | 460                                                                              | 440        | 430          | 410          | 400         | 385            | 540 to 720                                                               | 530 to 710   | 510 to 690   | 500 to 680  | 490 to 660     | 17                                                                                                                                                                       |
| S500M<br>S500ML | 1.8829<br>1.8839                                                                                                                                                                | 500                                                                              | 480        | 460          | 450          | 450         | 450            | 580 to 760                                                               | 580 to 760   | 580 to 760   | 560 to 750  | 560 to 750     | 15                                                                                                                                                                       |
| a For plate     | a For plate, strip and wide flats with widths 2 600 mm the direction transverse (t) to the rolling direction applies. For all other products the values apply for the direction |                                                                                  |            |              |              |             |                |                                                                          |              |              |             |                |                                                                                                                                                                          |

parallel (1) to the rolling direction

For product thickness < 3 mm for which test pieces with a gauge length of Lo = 80 mm shall be tested, the values shall be agreed upon at the time of the order.

NOVEMBER 2024

### Bridge articulation system

An optimised design requires that the articulation system is considered correctly in the global FE-modelling

- > Bridge articulation system:
  - > Expansion joints often at bridge ends
  - > Vertical and lateral bridge bearings at bridge ends
  - > Lateral wind bearings at towers
  - Hydraulic buffers and end stops for control of the longitudinal displacements of the deck - located at towers or bridge ends









COWI

# Bridge articulation system

Long span bridges give large movements for in-service loads (traffic, temperature, wind) and seismic actions

- > Hydraulic buffers:
  - restrain bridge deck for fast passing trucks and buffeting wind
  - reduction of movements giving extended lifetime of sliding elements
  - allow free movement of deck for temperature and static traffic loads giving reduced reaction forces in the structures
  - viscous damping during seismic events dissipating energy and controlling movements and forces
- > Hydraulic end stops:
  - > limit expansion joint movements to a manageable level





# FE-modelling – global, semi local and local

The global parametric FE-model using a combination of beam, shell and solid elements

- Local models are activated inside the global model with correct loading/boundary conditions
- > Fast design updates and changes giving a refined and optimised design
- > Fast output with consequences quantities and CO<sub>2</sub>



# Design conditions

- > Long span signature bridges often more complex
- > Design shall have less impact on environment
- > Optimised pricing, fast and safe construction
- > Example here taken from 1915 Çanakkale Bridge:
  - > Close collaboration between designer & contractor
  - Extensive focus on alignment, anchor block location, layout and quantities. In parallel decide on tower foundation layout, fabrication and floatability
  - Parallel works streams e.g. installation of inclusion piles and casting of caissons
  - > Being able to design and construct in parallel
  - Steel towers, main cable and deck segments prefabrication in large units. Fast erection on site using huge tower cranes, floating cranes and special made lifting gantries



COWI

# **Operational conditions**

- Longer service life and service life extension for existing bridges
  - > Install dehumidification of main cables and deck
- > Structural health monitoring and digital twins
  - A fundamental requirement for carrying out proactive operation and maintenance is to be able to predict the bridge performance
  - > The aim is also lower maintenance costs
- > Less bridge downtime
  - Installation of wind screens and control bridge dynamics in windy conditions, dynamic traffic signs etc.
- Maintenance having less impact on environment







32 14 NOVEMBER 2024



# Thank you for your attention

14 NOVEMBER 2024

34 14 NOVEMBER 2024

E.L



14 NOVEMBER 2024

111111

C Carro C C C